# Applying Bloom’s Revised Taxonomy to Mathematics

A few months ago, I designed a training on applying Bloom’s Taxonomy to create higher order thinking questions in mathematics.

I showed two figures: (1) A right triangle and (2) an equilateral triangle.

#### Equilateral Triangle

The following were questions that I developed to help the instructors think through the various levels of Bloom’s Revised Taxonomy in regards to mathematics.

• Knowledge – What can you tell me about the first triangle?
• The students provide any information they know about the mathematical concept.
• Comprehension – What makes the first triangle a right triangle?
• The students use the information they already know about triangles to rightly identify a specific triangle.
• Application – Based on what you know about right triangles, why is the second triangle not a right triangle?
• The students apply the information they already know about triangle to differentiating one triangle from another based on their characteristics.
• Analysis – How is the first triangle similar to a rectangle?
• The students compare the characteristics of a right triangle with those of a rectangle.
• Evaluation – How would you prove that all right triangles fit in a circle, with each vertex (or corner) of the triangle touching the circle?
• The students extend their understanding of triangles by proving a well-known theorem of geometry (see Thale’s Theorem)
• Synthesis – How could you use the right triangle to design our next engineering project?
• The students integrate information they know and understand about the right triangle into designing a new project.